
Access Path Selection
in a Relational Database Management System

P. Griffiths Selinger
M. M. Astrahan

D. D. Chamberlin
R. A. Lorie
T. G. Price

IBM Research Division, San Jose, California 95193
ABSTRACT: In a high level query and data
manipulation language such as SQL, requests
are stated non-procedurally, without refer-
ence to access paths. This paper describes
how System R chooses access paths for both
simple (single relation) and complex que-
ries (such as joins), given a user specifi-
cation of desired data as a boolean
expression of predicates. System R is an
experimental database management system
developed to carry out research on the rela-
tional model of data. System R was designed
and built by members of the IBM San Jose
Research Laboratory.

1. Introduction

System R is an experimental database man-
agement system based on the relational
model of data which has been under develop-
ment at the IBM San Jose Research Laboratory
since 1975 <1>. The software was developed
as a research vehicle in relational data-
base, and is not generally available out-
side the IBM Research Division.

This paper assumes familiarity with rela-
tional data model terminology as described
in Codd <7> and Date <8>. The user interface
in System R is the unified query, data def-
inition, and manipulation language SQL <5>.
Statements in SQL can be issued both from an
on-line casual-user-oriented terminal
interface and from programming languages
such as PL/I and COBOL.

In System R a user need not know how the
tuples are physically stored and what
access paths are available (e.g. which col-
umns have indexes). SQL statements do not
require the user to specify anything about
the access path to be used for tuple
retrieval. Nor does a user specify in what
order joins are to be performed. The System
R optimizer chooses both join order and an
23

Copyright © 1979 by the ACM, Inc., used by permission. Permis-
sion to make digital or hard copies is granted provided that copies
are not made or distributed for profit or direct commercial advan-
tage, and that copies show this notice on the first page or initial
screen of a display along with the full citation.
Originally published in the Proceedings of the 1979 ACM SIGMOD
International Conference on the Management of Data.

Digital recreation by Eric A. Brewer, brewer@cs.berke-
ley.edu, October 2002.
access path for each table in the SQL state-
ment. Of the many possible choices, the
optimizer chooses the one which minimizes
“total access cost” for performing the
entire statement.

This paper will address the issues of
access path selection for queries.
Retrieval for data manipulation (UPDATE,
DELETE) is treated similarly. Section 2
will describe the place of the optimizer in
the processing of a SQL statement, and sec-
tion 3 will describe the storage component
access paths that are available on a single
physically stored table. In section 4 the
optimizer cost formulas are introduced for
single table queries, and section 5 dis-
cusses the joining of two or more tables,
and their corresponding costs. Nested que-
ries (queries in predicates) are covered in
section 6.

2. Processing of an SQL statement

A SQL statement is subjected to four
phases of processing. Depending on the ori-
gin and contents of the statement, these
phases may be separated by arbitrary inter-
vals of time. In System R these arbitrary
time intervals are transparent to the sys-
tem components which process a SQL state-
ment. These mechanisms and a description of
the processing of SQL statements from both
programs and terminals are further dis-
cussed in <2>. Only an overview of those
processing steps that are relevant to
access path selection will be discussed
here.

The four phases of statement processing
are parsing, optimization, code generation,
and execution. Each SQL statement is sent to
the parser, where it is checked for correct
syntax. A query block is represented by a
SELECT list, a FROM list, and a WHERE tree,
containing, respectively the list of items
to be retrieved, the table(s) referenced,
and the boolean combination of simple pred-
icates specified by the user. A single SQL
statement may have many query blocks
because a predicate may have one operand
which is itself a query.

If the parser returns without any errors
detected, the OPTIMIZER component is
called. The OPTIMIZER accumulates the names
www.manaraa.com

of tables and columns referenced in the
query and looks them up in the System R cat-
alogs to verify their existence and to
retrieve information about them.

The catalog lookup portion of the OPTI-
MIZER also obtains statistics about the
referenced relations, and the access paths
available on each of them. These will be
used later in access path selection. After
catalog lookup has obtained the datatype
and length of each column, the OPTIMIZER
rescans the SELECT-list and WHERE-tree to
check for semantic errors and type compati-
bility in both expressions and predicate
comparisons.

Finally the OPTIMIZER performs access
path selection. It first determines the
evaluation order among the query blocks in
the statement. Then for each query block,
the relations in the FROM list are pro-
cessed. If there is more than one relation
in a block, permutations of the join order
and of the method of joining are evaluated.
The access paths that minimize total cost
for the block are chosen from a tree of
alternate path choices. This minimum cost
solution is represented by a structural
modification of the parse tree. The result
is an execution plan in the Access Specifi-
cation Language (ASL) <10>.

After a plan is chosen for each query
block and represented in the parse tree, the
CODE GENERATOR is called. The CODE GENERA-
TOR is a table-driven program which trans-
lates ASL trees into machine language code
to execute the plan chosen by the OPTIMIZER.
In doing this it uses a relatively small
number of code templates, one for each type
of join method (including no join). Query
blocks for nested queries are treated as
“subroutines” which return values to the
predicates in which they occur. The CODE
GENERATOR is further described in <9>.

During code generation, the parse tree is
replaced by executable machine code and its
associated data structures. Either control
is immediately transferred to this code or
the code is stored away in the database for
later execution, depending on the origin of
the statement (program or terminal). In
either case, when the code is ultimately
executed, it calls upon the System R inter-
nal storage system (RSS) via the storage
system interface (RSI) to scan each of the
physically stored relations in the query.
These scans are along the access paths cho-
sen by the OPTIMIZER. The RSI commands that
may be used by generated code are described
in the next section.

3. The Research Storage System

The Research Storage System (RSS) is the
storage subsystem of System R. It is respon-
sible for maintaining physical storage of
relations, access paths on these relations,
locking (in a multi-user environment), and
logging and recovery facilities. The RSS
24
presents a tuple-oriented interface (RSI)
to its users. Although the RSS may be used
independently of System R, we are concerned
here with its use for executing the code
generated by the processing of SQL state-
ments in System R, as described in the pre-
vious section. For a complete description
of the RSS, see <1>.

Relations are stored in the RSS as a col-
lection of tuples whose columns are physi-
cally contiguous. These tuples are stored
on 4K byte pages; no tuple spans a page.
Pages are organized into logical units
called segments. Segments may contain one
or more relations, but no relation may span
a segment. Tuples from two or more relations
may occur on the same page. Each tuple is
tagged with the identification of the rela-
tion to which it belongs.

The primary way of accessing tuples in a
relation is via an RSS scan. A scan returns
a tuple at a time along a given access path.
OPEN, NEXT, and CLOSE are the principal com-
mands on a scan.

Two types of scans are currently avail-
able for SQL statements. The first type is a
segment scan to find all the tuples of a
given relation. A series of NEXTs on a seg-
ment scan simply examines all pages of the
segment which contain tuples, from any
relation, and returns those tuples belong-
ing to the given relation.

The second type of scan is an index scan.
An index may be created by a System R user
on one or more columns of a relation, and a
relation may have any number (including
zero) of indexes on it. These indexes are
stored on separate pages from those con-
taining the relation tuples. Indexes are
implemented as B-trees <3>, whose leaves
are pages containing sets of (key, identi-
fiers of tuples which contain that key).
Therefore a series of NEXTs on an index scan
does a sequential read along the leaf pages
of the index, obtaining the tuple identifi-
ers matching a key, and using them to find
and return the data tuples to the user in
key value order. Index leaf pages are
chained together so that NEXTs need not ref-
erence any upper level pages of the index.

In a segment scan, all the non-empty
pages of a segment will be touched, regard-
less of whether there are any tuples from
the desired relation on them. However, each
page is touched only once. When an entire
relation is examined via an index scan, each
page of the index is touched only once, but
a data page may be examined more than once
if it has two tuples on it which are not
“close” in the index ordering. If the tuples
are inserted into segment pages in the index
ordering, and if this physical proximity
corresponding to index key value is main-
tained, we say that the index is clustered.
A clustered index has the property that not
only each index page, but also each data
page containing a tuple from that relation
www.manaraa.com

will be touched only once in a scan on that
index.

An index scan need not scan the entire
relation. Starting and stopping key values
may be specified in order to scan only those
tuples which have a key in a range of index
values. Both index and segment scans may
optionally take a set of predicates, called
search arguments (or SARGS), which are
applied to a tuple before it is returned to
the RSI caller. If the tuple satisfies the
predicates, it is returned; otherwise the
scan continues until it either finds a tuple
which satisfies the SARGS or exhausts the
segment or the specified index value range.
This reduces cost by eliminating the over-
head of making RSI calls for tuples which
can be efficiently rejected within the RSS.
Not all predicates are of the form that can
become SARGS. A sargable predicate is one of
the form (or which can be put into the form)
“column comparison-operator value”. SARGS
are expressed as a boolean expression of
such predicates in disjunctive normal form.

4. Costs for single relation access paths

In the next several sections we will
describe the process of choosing a plan for
evaluating a query. We will first describe
the simplest case, accessing a single rela-
tion, and show how it extends and general-
izes to 2-way joins of relations, n-way
joins, and finally multiple query blocks
(nested queries).

The OPTIMIZER examines both the predi-
cates in the query and the access paths
available on the relations referenced by
the query, and formu1ates a cost prediction
for each access plan, using the following
cost formula:

COST = PAGE FETCHES + W * (RSI CALLS).

This cost is a weighted measure of I/O
(pages fetched) and CPU utilization
(instructions executed). W is an adjustable
weighting factor between I/O and CPU. RSI
CALLS is the predicted number of tuples
returned from the RSS. Since most of System
R’s CPU time is spent in the RSS, the number
of RSI calls is a good approximation for CPU
utilization. Thus the choice of a minimum
cost path to process a query attempts to
minimize total resources required.

During execution of the type-compatibil-
ity and semantic checking portion of the
OPTIMIZER, each query block’s WHERE tree of
predicates is examined. The WHERE tree is
considered to be in conjunctive normal
form, and every conjunct is called a boolean
factor. Boolean factors are notable because
every tuple returned to the user must sat-
isfy every boolean factor. An index is said
to match a boolean factor if the boolean
factor is a sargable predicate whose refer-
enced column is the index key; e.g., an
25
index on SALARY matches the predicate ‘SAL-
ARY = 20000’. More precisely, we say that a
predicate or set of predicates matches an
index access path when the predicates are
sargable and the columns mentioned in the
predicate(s) are an initial substring of
the set of columns of the index key. For
example, a NAME, LOCATION index matches
NAME = 'SMITH' AND LOCATION = 'SAN JOSE'. If
an index matches a boolean factor, an access
using that index is an efficient way to sat-
isfy the boolean factor. Sargable boolean
factors can also be efficiently satisfied
if they are expressed as search arguments.
Note that a boolean factor may be an entire
tree of predicates headed by an OR.

During catalog lookup, the OPTIMIZER
retrieves statistics on the relations in
the query and on the access paths available
on each relation. The statistics kept are
the following:

For each relation T,

- NCARD(T), the cardinality of relation T.

- TCARD(T), the number of pages in the seg-
ment that hold tuples of relation T.

- P(T), the fraction of data pages in the
segment that hold tuples of relation T.
P(T) = TCARD(T) / (no. of non-empty
pages in the segment).

For each index I on relation T,

- ICARD(I), number of distinct keys in index
I.

- NINDX(I), the number of pages in index I.

These statistics are maintained in the
System R catalogs, and come from several
sources. Initial relation loading and index
creation initialize these statistics. They
are then updated periodically by an UPDATE
STATISTICS command, which can be run by any
user. System R does not update these statis-
tics at every INSERT, DELETE, or UPDATE
because of the extra database operations
and the locking bottleneck this would cre-
ate at the system catalogs. Dynamic updat-
ing of statistics would tend to serialize
accesses that modify the relation contents.

Using these statistics, the OPTIMIZER
assigns a selectivity factor 'F' for each
boolean factor in the predicate list. This
selectivity factor very roughly corresponds
to the expected fraction of tuples which
will satisfy the predicate. TABLE 1 gives
the selectivity factors for different kinds
of predicates. We assume that a lack of sta-
tistics implies that the relation is small,
so an arbitrary factor is chosen.

Query cardinality (QCARD) is the product
of the cardinalities of every relation in
the query block’s FROM list times the prod-
uct of all the selectivity factors of that
www.manaraa.com

www.manaraa.com

26

TABLE 1 SELECTIVITY FACTORS

column = value
F = 1 / ICARD(column index) if there is an index on column
This assumes an even distribution of tuples among the index key values.
F = 1/10 otherwise

column1 = column2
F = 1/MAX(ICARD(column1 index), ICARD(column2 index))

if there are indexes on both column1 and column2
This assumes that each key value in the index with the smaller cardinality has a
matching value in the other index.
F = 1/ICARD(column-i index) if there is only an index on column-i
F = 1/10 otherwise

column > value (or any other open-ended comparison)
F = (high key value - value) / (high key value - low key value)
Linear interpolation of the value within the range of key values yields F if the col-
umn is an arithmetic type and value is known at access path selection time.
F = 1/3 otherwise (i.e. column not arithmetic)
There is no significance to this number, other than the fact that it is less selec-
tive than the guesses for equal predicates for which there are no indexes, and that
it is less than 1/2. We hypothesize that few queries use predicates that are satis-
fied by more than half the tuples.

column BETWEEN value1 AND value2
F = (value2 - value1) / (high key value - low key value)
A ratio of the BETWEEN value range to the entire key value range is used as the
selectivity factor if column is arithmetic and both value1 and value2 are known at
access path selection.
F = 1/4 otherwise
Again there is no significance to this choice except that it is between the default
selectivity factors for an equal predicate and a range predicate.

column IN (list of values)
F = (number of items in list) * (selectivity factor for column = value)
This is allowed to be no more than 1/2.

columnA IN subquery
F = (expected cardinality of the subquery result) / (product of the cardinalities of

all the relations in the subquery’s FROM-list).
The computation of query cardinality will be discussed below. This formula is derived
by the following argument:
Consider the simplest case, where subquery is of the form “SELECT columnB FROM rela-
tionC ...”. Assume that the set of all columnB values in relationC contains the set
of all columnA values. If all the tuples of relationC are selected by the subquery,
then the predicate is always TRUE and F = 1. If the tuples of the subquery are
restricted by a selectivity factor F’, then assume that the set of unique values in
the subquery result that match columnA values is proportionately restricted, i.e. the
selectivity factor for the predicate should be F’. F’ is the product of all the sub-
query’s selectivity factors, namely (subquery cardinality) / (cardinality of all pos-
sible subquery answers). With a little optimism, we can extend this reasoning to
include subqueries which are joins and subqueries in which columnB is replaced by an
arithmetic expression involving column names. This leads to the formula given above.

(pred expression1) OR (pred expression2)
F = F(pred1) + F(pred2) - F(pred1) * F(pred2)

(pred1) AND (pred2)
F = F(pred1) * F(pred2)
Note that this assumes that column values are independent.

NOT pred
F = 1 - F(pred)

query block’s boolean factors. The number
of expected RSI calls (RSICARD) is the prod-
uct of the relation cardinalities times the
selectivity factors of the sargable boolean
factors, since the sargable boolean factors
will be put into search arguments which will
filter out tuples without returning across
the RSS interface.

Choosing an optimal access path for a
single relation consists of using these
selectivity factors in formulas together
with the statistics on available access
paths. Before this process is described, a
definition is needed. Using an index access
path or sorting tuples produces tuples in
the index value or sort key order. We say
that a tuple order is an interesting order
if that order is one specified by the query
block’s GROUP BY or ORDER BY clauses.

For single relations, the cheapest access
path is obtained by evaluating the cost for
each available access path (each index on
the relation, plus a segment scan). The
costs will be described below. For each such
access path, a predicted cost is computed
along with the ordering of the tuples it
will produce. Scanning along the SALARY
index in ascending order, for example, will
produce some cost C and a tuple order of
SALARY (ascending). To find the cheapest
access plan for a single relation query, we
need only to examine the cheapest access
path which produces tuples in each “inter-
esting” order and the cheapest “unordered”
access path. Note that an “unordered”
access path may in fact produce tuples in
some order, but the order is not “interest-
ing”. If there are no GROUP BY or ORDER BY
clauses on the query, then there will be no
interesting orderings, and the cheapest
access path is the one chosen. If there are
27

TABLE 2 COS

SITUATION

Unique index matching an equal predicate 1+1+

Clustered index I matching one or more
boolean factors

F(pr

Non-clustered index I matching one or
more boolean factors

F(pr

Clustered index I not matching any
boolean factors

(NIN

Non-clustered index I not matching any
boolean factors

(NIN

Segment scan TCAR
GROUP BY or ORDER BY clauses, then the
cost for producing that interesting order-
ing must be compared to the cost of the
cheapest unordered path plus the cost of
sorting QCARD tuples into the proper
order. The cheapest of these alternatives
is chosen as the plan for the query block.

The cost formulas for single relation
access paths are given in TABLE 2. These
formulas give index pages fetched plus
data pages fetched plus the weighting fac-
tor times RSI tuple retrieval calls. W is
the weighting factor between page fetches
and RSI calls. Some situations give sev-
eral alternative formulas depending on
whether the set of tuples retrieved will
fit entirely in the RSS buffer pool (or
effective buffer pool per user). We assume
for clustered indexes that a page remains
in the buffer long enough for every tuple
to be retrieved from it. For non-clustered
indexes, it is assumed that for those
relations not fitting in the buffer, the
relation is sufficiently large with
respect to the buffer size that a page
fetch is required for every tuple
retrieval.

5. Access path selection for joins

In 1976, Blasgen and Eswaran <4> exam-
ined a number of methods for performing 2-
way joins. The performance of each of
these methods was analyzed under a variety
of relation cardinalities. Their evidence
indicates that for other than very small
relations, one of two join methods were
always optimal or near optimal. The System
R optimizer chooses between these two
methods. We first describe these methods,
and then discuss how they are extended for
www.manaraa.com

T FORMULAS

COST (in pages)

W

eds) * (NINDX(I) + TCARD) + W * RSICARD

eds) * (NINDX(I) + NCARD) + W * RSICARD or
F(preds) * (NINDX(I) + TCARD) + W * RSICARD
if this number fits in the System R buffer

DX(I) + TCARD) + W * RSICARD

DX(I) + NCARD) + W * RSICARD
or (NINDX(I) + TCARD) + W * RSICARD if
this number fits in the System R buffer

D/P + W * RSICARD

n-way joins. Finally we specify how the join
order (the order in which the relations are
joined) is chosen. For joins involving two
relations, the two relations are called the
outer relation, from which a tuple will be
retrieved first, and the inner relation,
from which tuples will be retrieved, possi-
bly depending on the values obtained in the
outer relation tuple. A predicate which
relates columns of two tables to be joined
is called a join predicate. The columns ref-
erenced in a join predicate are called join
columns.

The first join method, called the nested
loops method, uses scans, in any order, on
the outer and inner relations. The scan on
the outer relation is opened and the first
tuple is retrieved. For each outer relation
tuple obtained, a scan is opened on the
inner relation to retrieve, one at a time,
all the tuples of the inner relation which
satisfy the join predicate. The composite
tuples formed by the outer-relation-tuple /
inner-relation-tuple pairs comprise the
result of this join.

The second join method, called merging
scans, requires the outer and inner rela-
tions to be scanned in join column order.
This implies that, along with the columns
mentioned in ORDER BY and GROUP BY, columns
of equi-join predicates (those of the form
Table1.columnl = Table2.column2) also
define “interesting” orders. If there is
more than one join predicate, one of them is
used as the join predicate and the others
are treated as ordinary predicates. The
merging scans method is only applied to
equi-joins, although in principle it could
be applied to other types of joins. If one
or both of the relations to be joined has no
indexes on the join column, it must be
sorted into a temporary list which is
ordered by the join column.

The more complex logic of the merging
scan join method takes advantage of the
ordering on join columns to avoid rescan-
ning the entire inner relation (looking for
a match) for each tuple of the outer rela-
tion. It does this by synchronizing the
inner and outer scans by reference to match-
ing join column values and by “remembering”
where matching join groups are located.
Further savings occur if the inner relation
is clustered on the join column (as would be
true if it is the output of a sort on the
join column). “Clustering” on a column
means that tuples which have the same value
in that column are physically stored close
to each other so that one page access will
retrieve several tuples.

N-way joins can be visualized as a
sequence of 2-way joins. In this visualiza-
tion, two relations are joined together,
the resulting composite relation is joined
with the third relation, etc. At each step
of the n-way join it is possible to identify
the outer relation (which in general is com-
posite) and the inner relation (the rela-
28
tion being added to the join). Thus the
methods described above for two way joins
are easily generalized to n-way joins. How-
ever, it should be emphasized that the first
2-way join does not have to be completed
before the second 2-way join is started. As
soon as we get a composite tuple for the
first 2-way join, it can be joined with
tuples of the third relation to form result
tuples for the 3-way join, etc. Nested loop
joins and merge scan joins may be mixed in
the same query, e.g. the first two relations
of a three-way join may be joined using
merge scans and the composite result may be
joined with the third relation using a
nested loop join. The intermediate compos-
ite relations are physically stored only if
a sort is required for the next join step.
When a sort of the composite relation is not
specified, the composite relation will be
materialized one tuple at a time to partic-
ipate in the next join.

We now consider the order in which the
relations are chosen to be joined. It should
be noted that although the cardinality of
the join of n relations is the same regard-
less of join order, the cost of joining in
different orders can be substantially dif-
ferent. If a query block has n relations in
its FROM list, then there are n factorial
permutations of relation join orders. The
search space can be reduced by observing
that once the first k relations are joined,
the method to join the composite to the k+1-
st relation is independent of the order of
joining the first k; i.e. the applicable
predicates are the same, the set of inter-
esting orderings is the same, the possible
join methods are the same, etc. Using this
property, an efficient way to organize the
search is to find the best join order for
successively larger subsets of tables.

A heuristic is used to reduce the join
order permutations which are considered.
When possible, the search is reduced by con-
sideration only of join orders which have
join predicates relating the inner relation
to the other relations already participat-
ing in the join. This means that in joining
relations tl,t2,...,tn only those orderings
til,ti2,...,tin are examined in which for
all j (j=2,...,n) either

(1) tij has at least one join predicate with
some relation tik, where k < j, or

(2) for all k > j, tik has no join predicate
with til,tit,...,or ti(j-1).

This means that all joins requiring Carte-
sian products are performed as late in the
join sequence as possible. For example, if
Tl,T2,T3 are the three relations in a query
block’s FROM list, and there are join pred-
icates between Tl and T2 and between T2 and
T3 on different columns than the Tl-T2 join,
then the following permutations are not
considered:

Tl-T3-T2
www.manaraa.com

T3-Tl-T2

To find the optimal plan for joining n
relations, a tree of possible solutions is
constructed. As discussed above, the search
is performed by finding the best way to join
subsets of the relations. For each set of
relations joined, the cardinality of the
composite relation is estimated and saved.
In addition, for the unordered join, and for
each interesting order obtained by the join
thus far, the cheapest solution for achiev-
ing that order and the cost of that solution
are saved. A solution consists of an ordered
list of the relations to be joined, the join
method used for each join, and a plan indi-
cating how each relation is to be accessed.
If either the outer composite relation or
the inner relation needs to be sorted before
the join, then that is also included in the
plan. As in the single relation case,
“interesting” orders are those listed in
the query block’s GROUP BY or ORDER BY
clause, if any. Also every join column
defines an “interesting” order. To minimize
the number of different interesting orders
and hence the number of solutions in the
tree, equivalence classes for interesting
orders are computed and only the best solu-
tion for each equivalence class is saved.
For example, if there is a join predicate
E.DNO = D.DNO and another join predicate
D.DNO = F.DNO then all three of these col-
umns belong to the same order equivalence
class.

The search tree is constructed by itera-
tion on the number of relations joined so
far. First, the best way is found to access
each single relation for each interesting
tuple ordering and for the unordered case.
Next, the best way of joining any relation
to these is found, subject to the heuristics
for join order. This produces solutions for
joining pairs of relations. Then the best
way to join sets of three relations is found
by consideration of all sets of two rela-
tions and joining in each third relation
permitted by the join order heuristic. For
each plan to join a set of relations, the
order of the composite result is kept in the
tree. This allows consideration of a merge
scan join which would not require sorting
the composite. After the complete solutions
(all of the relations joined together) have
been found, the optimizer chooses the
cheapest solution which gives the required
order, if any was specified. Note that if a
solution exists with the correct order, no
sort is performed for ORDER BY or GROUP BY,
unless the ordered solution is more expen-
sive than the cheapest unordered solution
plus the cost of sorting into the required
order.

The number of solutions which must be
stored is at most 2**n (the number of sub-
sets of n tables) times the number of inter-
esting result orders. The computation time
to generate the tree is approximately pro-
portional to the same number. This number is
frequently reduced substantially by the
29
join order heuristic. Our experience is
that typical cases require only a few thou-
sand bytes of storage and a few tenths of a
second of 370/158 CPU time. Joins of 8
tables have been optimized in a few seconds.

Computation of costs

The costs for joins are computed from the
costs of the scans on each of the relations
and the cardinalities. The costs of the
scans on each of the relations are computed
using the cost formulas for single relation
access paths presented in section 4.

Let C-outer(path1) be the cost of scan-
ning the outer relation via path1, and N be
the cardinality of the outer relation
tuples which satisfy the applicable predi-
cates. N is computed by:

N = (product of the cardinalities of all
relations T of the join so far) *
(product of the selectivity factors of
al1 applicable predicates).

Let C-inner(path2) be the cost of scanning
the inner relation, applying all applicable
predicates. Note that in the merge scan join
this means scanning the contiguous group of
the inner relation which corresponds to one
join column value in the outer relation.
Then the cost of a nested loop join is

C-nested-loop-join(pathl,path2)=
C-outer(path1 + N * C-inner(path2)

The cost of a merge scan join can be bro-
ken up into the cost of actually doing the
merge plus the cost of sorting the outer or
inner relations, if required. The cost of
doing the merge is

C-merge(pathl,path2)=
C-outer(path1) + N * C-inner(path2)

For the case where the inner relation is
sorted into a temporary relation none of the
single relation access path formulas in
section 4 apply. In this case the inner scan
is like a segment scan except that the merg-
ing scans method makes use of the fact that
the inner relation is sorted so that it is
not necessary to scan the entire inner rela-
tion looking for a match. For this case we
use the following formula for the cost of
the inner scan.

C-inner(sorted list) =
TEMPPAGES/N + W*RSICARD

where TEMPPAGES is the number of pages
required to hold the inner relation. This
formula assumes that during the merge each
page of the inner relation is fetched once.

It is interesting to observe that the
cost formula for nested loop joins and the
cost formula for merging scans are essen-
tially the same. The reason that merging
scans is sometimes better than nested loops
is that the cost of the inner scan may be
much less. After sorting, the inner rela-
tion is clustered on the join column which
tends to minimize the number of pages
www.manaraa.com

fetched, and it is not necessary to scan the
entire inner relation (looking for a match)
for each tuple of the outer relation.

The cost of sorting a relation, C-
sort(path), includes the cost of retrieving
the data using the specified access path,
sorting the data, which may involve several
passes, and putting the results into a tem-
porary list. Note that prior to sorting the
inner table, only the local predicates can
be applied. Also, if it is necessary to sort
a composite result, the entire composite
relation must be stored in a temporary rela-
tion before it can be sorted. The cost of
inserting the composite tuples into a tem-
porary relation before sorting is included
in C-sort(path).

Example of tree

We now show how the search is done for
the example join shown in Fig. 1. First we
find all of the reasonable access paths for
single relations with only their local
predicates applied. The results for this
example are shown in Fig. 2. There are three
access paths for the EMP table: an index on
DNO, an index on JOB, and a segment scan.
The interesting orders are DNO and JOB. The
index on DNO provides the tuples in DNO
order and the index on JOB provides the
tuples in JOB order. The segment scan access
path is, for our purposes, unordered. For
this example we assume that the index on JOB
is the cheapest path, so the segment scan
path is pruned. For the DEPT relation there
are two access paths, an index on DNO and a
segment scan. We assume that the index on
DNO is cheaper so the segment scan path is
pruned. For the JOB relation there are two
access paths, an index on JOB and a segment
scan. We assume that the segment scan path
is cheaper, so both paths are saved. The
results just described are saved in the
search tree as shown in Fig. 3. In the fig-
ures, the notation C(EMP.DNO) or C(E.DNO)
means the cost of scanning EMP via the DNO
index, applying all predicates which are
applicable given that tuples from the spec-
ified set of relations have already been
fetched. The notation Ni is used to repre-
sent the cardinalities of the different
partial results.

Next, solutions for pairs of relations
are found by joining a second relation to
the results for single relations shown in
Fig. 3. For each single relation, we find
access paths for joining in each second
relation for which there exists a predicate
connecting it to the first relation. First
we consider access path selection for
nested loop joins. In this example we assume
that the EMP-JOB join is cheapest by access-
ing JOB on the JOB index. This is likely
since it can fetch directly the tuples with
matching JOB (without having to scan the
entire relation). In practice the cost of
joining is estimated using the formulas
given earlier and the cheapest path is cho-
sen. For joining the EMP relation to the
30
SELECT NAME,TITLE,SAL,DNAME
FROM EMP,DEPT,JOB
WHERE TITLE=‘CLERK’
AND LOC=‘DENVER’
AND EMP.DNO=DEPT.DNO
AND EMP.JOB=JOB.JOB

“Retrieve the name, salary, job title, and department
name of employees who are clerks and work for
departments in Denver.”

Figure 1. JOIN example

Access Paths for Single Relations

• Eligible Predicates: Local Predicates Only

• “Interesting” Orderings: DNO, JOB

Figure 2.

NAME DNO JOB SAL
SMITH 50 12 8500
JONES 50 5 15000
DOE 51 5 9500

DNO DNAME LOC
50 MFG DENVER
51 BILLING BOULDER
52 SHIPPING DENVER

JOB TITLE
5 CLERK
6 TYPIST
8 SALES
12 MECHANIC

EMP

DEPT

JOB
www.manaraa.com

DEPT relation we assume that the DNO index
is cheapest. The best access path for each
second-level relation is combined with each
of the plans in Fig. 3 to form the nested
loop solutions shown in Fig. 4.

Next we generate solutions using the
merging scans method. As we see on the left
side of Fig. 3, there is a scan on the EMP
relation in DNO order, so it is possible to
use this scan and the DNO scan on the DEPT
relation to do a merging scans join, without
any sorting. Although it is possible to do
the merging join without sorting as just
described, it might be cheaper to use the
JOB index on EMP, sort on DHO, and then
merge. Note that we never consider sorting
the DEPT table because the cheapest scan on
that table is already in DNO order.

For merging JOB with EMP, we only con-
sider the JOB index on EMP since it is the
cheapest access path for EMP regardless of
order. Using the JOB index on JOB, we can

Figure 3. Search tree for single relations
Figure 4. Extended search tree for second relation (nested loop join)
31
merge without any sorting. However, it
might be cheaper to sort JOB using a rela-
tion scan as input to the sort and then do
the merge.

Referring to Fig. 3, we see that the
access path chosen for the DEPT relation is
the DNO index. After accessing DEPT via this
index, we can merge with EMP using the DHO
index on EMP, again without any sorting.
However, it might be cheaper to sort EMP
first using the JOB index as input to the
sort and then do the merge. Both of these
cases are shown in Fig. 5.

As each of the costs shown in Figs. 4 and
5 are computed they are compared with the
cheapest equivalent solution (same tables
and same result order) found so far, and the
cheapest solution is saved. After this
pruning, solutions for all three relations
are found. For each pair of relations, we
find access paths for joining in the remain-
ing third relation. As before we will extend
the tree using nested loop joins and merging
scans to join the third relation. The search
tree for three relations is shown in Fig. 6.
Note that in one case both the composite
relation and the table being added (JOB) are
sorted. Note also that for some of the
cases, no sorts are performed at all. In
these cases, the composite result is mate-
rialized one tuple at a time and the inter-
mediate composite relation is never stored.
As before, as each of the costs are computed
they are compared with the cheapest solu-
tion.
www.manaraa.com

Figure 5. Extended search tree for second relation (merged join)

Figure 6. Extended search tree for third relation
www.manaraa.com

32

6. Nested Queries

A query may appear as an operand of a
predicate of the form “expression operator
query”. Such a query is called a Nested
Query or a Subquery. If the operator is one
of the six scalar comparisons (=, -=, >, >=,
<, <=), then the subquery must return a sin-
gle value. The following example using the
“=” operator was given in section 2:

SELECT NAME
FROM EMPLOYEE
WHERE SALARY =

(SELECT AVG(SALARY)
FROM EMPLOYEE)

If the operator is IN or NOT IN then the
subquery may return a set of values. For
example:

SELECT NAME
FROM EMPLOYEE
WHERE DEPARTMENT_NUMBER IN

(SELECT DEPARTMENT_NUMBER
FROM DEPARTMENT
WHERE LOCATION='DENVER')

In both examples, the subquery needs to
be evaluated only once. The OPTIMIZER will
arrange for the subquery to be evaluated
before the top level query is evaluated. If
a single value is returned, it is incorpo-
rated into the top level query as though it
had been part of the original query state-
ment; for example, if AVG(SAL) above evalu-
ates to 15000 at execution time, then the
predicate becomes “SALARY = 15000". If the
subquery can return a set of values, they
are returned in a temporary list, an inter-
nal form which is more efficient than a
relation but which can only be accessed
sequentially. In the example above, if the
subquery returns the list (17,24) then the
predicate is evaluated in a manner similar
to the way in which it would have been eval-
uated if the original predicate had been
DEPARTMENT_NUMBER IN (17,24).

A subquery may also contain a predicate
with a subquery, down to a (theoretically)
arbitrary level of nesting. When such sub-
queries do not reference columns from
tables in higher level query blocks, they
are all evaluated before the top level query
is evaluated. In this case, the most deeply
nested subqueries are evaluated first,
since any subquery must be evaluated before
its parent query can be evaluated.

A subquery may contain a reference to a
value obtained from a candidate tuple of a
higher level query block (see example
below). Such a query is called a correlation
subquery. A correlation subquery must in
principle be re-evaluated for each candi-
date tuple from the referenced query block.
This re-evaluation must be done before the
correlation subquery’s parent predicate in
the higher level block can be tested for
33
acceptance or rejection of the candidate
tuple. As an example, consider the query:

SELECT NAME
FROM EMPLOYEE X
WHERE SALARY > (SELECT SALARY

FROM EMPLOYEE
WHERE EMPLOYEE_NUMBER=

X.MANAGER)

This selects names of EMPLOYEE’s that
earn more than their MANAGER. Here X identi-
fies the query block and relation which fur-
nishes the candidate tuple for the
correlation. For each candidate tuple of
the top level query block, the MANAGER value
is used for evaluation of the subquery. The
subquery result is then returned to the
“SALARY >” predicate for testing acceptance
of the candidate tuple.

If a correlation subquery is not directly
below the query block it references but is
separated from that block by one or more
intermediate blocks, then the correlation
subquery evaluation will be done before
evaluation of the highest of the intermedi-
ate blocks. For example:

level 1 SELECT NAME
FROM EMPLOYEE X
WHERE SALARY >

level 2 (SELECT SALARY
FROM EMPLOYEE
WHERE EMPLOYEE-NUMBER =

level 3 (SELECT MANAGER
FROM ERPLOYEE
WHERE EMPLOYEE-NUMBER =

X.MANAGER))

This selects names of EMPLOYEE’s that earn
more than their MANAGER’s MANAGER. As
before, for each candidate tuple of the
level-1 query block, the EMPLOYEE.MANAGER
value is used for evaluation of the level-3
query block. In this case, because the level
3 subquery references a level 1 value but
does not reference level 2 values, it is
evaluated once for every new level 1 candi-
date tuple, but not for every level 2 candi-
date tuple.

If the value referenced by a correlation
subquery (X.MANAGER above) is not unique in
the set of candidate tuples (e.g., many
employees have the same manager), the pro-
cedure given above will still cause the sub-
query to be re-evaluated for each
occurrence of a replicated value. However,
if the referenced relation is ordered on the
referenced column, the re-evaluation can be
made conditional, depending on a test of
whether or not the current referenced value
is the same as the one in the previous can-
didate tuple. If they are the same, the pre-
vious evaluation result can be used again.
In some cases, it might even pay to sort the
referenced relation on the referenced col-
umn in order to avoid re-evaluating subque-
ries unnecessarily. In order to determine
whether or not the referenced column values
www.manaraa.com

are unique. the OPTIMIZER can use clues like
NCARD > ICARD, where NCARD is the relation
cardinality and ICARD is the index cardi-
nality of an index on the referenced column.

7. Conclusion

The System R access path selection has
been described for single table queries,
joins, and nested queries. Evaluation work
on comparing the choices made to the “right”
choice is in progress, and will be described
in a forthcoming paper. Preliminary results
indicate that, although the costs predicted
by the optimizer are often not accurate in
absolute value, the true optimal path is
selected in a large majority of cases. In
many cases, the ordering among the esti-
mated costs for all paths considered is pre-
cisely the same as that among the actual
measured costs.

Furthermore, the cost of path selection
is not overwhelming. For a two-way join, the
cost of optimization is approximately
equivalent to between 5 and 20 database
retrievals. This number becomes even more
insignificant when such a path selector is
placed in an environment such as System R,
where application programs are compiled
once and run many times. The cost of optimi-
zation is amortized over many runs.

The key contributions of this path selec-
tor over other work in this area are the
expanded use of statistics (index cardinal-
ity, for example), the inclusion of CPU uti-
lization into the cost formulas, and the
method of determining join order. Many que-
ries are CPU-bound, particularly merge
joins for which temporary relations are
created and sorts performed. The concept of
“selectivity factor” permits the optimizer
to take advantage of as many of the query’s
restriction predicates as possible in the
RSS search arguments and access paths. By
remembering “interesting ordering” equiva-
lence classes for joins and ORDER or GROUP
specifications, the optimizer does more
bookkeeping than most path selectors, but
this additional work in many cases results
in avoiding the storage and sorting of
intermediate query results. Tree pruning
and tree searching techniques allow this
additional bookkeeping to be performed
efficiently. More work on validation of the
optimizer cost formulas needs to be done,
but we can conclude from this preliminary
work that database management systems can
support non-procedural query languages with
performance comparable to those supporting
the current more procedural languages.

Cited and General References

<1> Astrahan, M. M. et al. System R:
Relational Approach to Database
Management. ACM Transactions on Database
Systems, Vol. 1, No. 2, June 1976, pp.
34
97-137.
<2> Astrahan, M. M. et al. System R: A

Relational Database Management System.
To appear in Computer. [Appeared: IEEE
Computer, 12(5), pp. 42-48, May 1979]

<3> Bayer, R. and McCreight, E.
Organization and Maintenance of Large
Ordered Indices. Acta Informatica, Vol.
1, 1972.

<4> Blasgen, M.W. and Eswaran, K.P. On the
Evaluation of Queries in a Relational
Data Base System. IBM Research Report
RJl745. April, 1976.

<5> Chamberlin, D.D., et al. SEQUEL2: A
Unified Approach to Data Definition,
Manipulation, and Control. IBM Journal
of Research and Development, Vol. 20,
No. 6, Nov. 1976, pp. 560-575.

<6> Chamberlin, D.D., Gray, J.N., and
Traiger, I.L. Views, Authorization and
Locking in a Relational Data Base
System. ACM National Computer Conference
Proceedings, 1975, pp. 425-430.

<7> Codd, E.F. A Relational Model of Data
for Large Shared Data Banks. ACM
Communications, Vol. 13. No. 6, June,
1970, pp. 377-387.

<8> Date, C.J. An Introduction to Data Base
Systems, Addison-Wesley, 1975.

<9> Lorie. R.A. and Wade, B.W. The
Compilation of a Very High Level Data
Language. IBM Research Report RJ2008,
May, 1977.

<10> Lorie, R.A. and Nilsson, J.F. An
Access Specification Language for a
Relational Data Base System. IBM
Research Report RJ2218. April, 1978.

<11> Stonebraker, M.R., Wang, E., Kreps.
P., and Held, G.D. The Design and
Implementation of INGRES. ACM Trans. on
Database Systems, Vol. 1, No. 3,
September, 1976, pp. 189-222.

<12> Todd, S. PRTV: An Efficient
Implementation for Large Relational Data
Bases. Proc. International Conf. on.
Very Large Data Bases, Framingham.
Mass., September, 1975.

<13> Wong, E., and Youssefi, K.
Decomposition — A Strategy for Query
Processing. ACM Transactions on Database
Systems, Vol. 1, No. 3 (Sept. 1976) pp.
223-241.

<14> Zloof, M.H. Query by Example. Proc.
AFIPS 1975 NCC, Vol. 44, AFIPS Press,
Montvale, N.J., pp. 431-437.
www.manaraa.com

	1. Introduction
	2. Processing of an SQL statement
	3. The Research Storage System
	4. Costs for single relation access paths
	5. Access path selection for joins
	Computation of costs
	Example of tree

	Figure 1. JOIN example
	Figure 2.
	Figure 3. Search tree for single relations
	Figure 4. Extended search tree for second relation (nested loop join)
	Figure 5. Extended search tree for second relation (merged join)
	Figure 6. Extended search tree for third relation
	6. Nested Queries
	7. Conclusion
	Cited and General References

